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Abstract 

This dissertation describes the parallelization of the treecode algorithm for N-Body problem 

and performance comparison among three different parallel programming paradigms, MPI, 

hybrid MPI-OpenMP, and GridRPC. In N-Body simulation, the specific routine for calculating 

the forces on the bodies which accounts for upwards of 90% of the cycles in typical 

computations is eminently suitable for obtaining parallelism with light-weight OpenMP threads 

in the hybrid model and with multiple asynchronous GridRPC calls in the GridRPC model. 

Multiple levels of parallelism are achieved by the hybrid program: the workload of the force 

calculation is shared among OpenMP threads after ORB domain decomposition among MPI 

processes. In addition, redundant MPI intra-node communication is removed and loop 

scheduling of OpenMP threads is adopted with appropriate chunk size for better load balance in 

the hybrid model. Meanwhile, in the GridRPC implementation, this workload is divided among 

the compute nodes by simultaneously calling multiple GridRPC requests to them. A preliminary 

GridRPC computing system which consists of multiple clusters is constructed using NetSolve 

middleware for evaluating and comparing the performance of the GridRPC code and that of 

MPI and hybrid codes on individual clusters with data sets of 10,000, 50,000, and 100,000 

bodies. 

Experimental results demonstrate that no matter how many processors are used and how large 

the data set size is, the hybrid MPI-OpenMP implementation outperforms the corresponding 

pure MPI one by average of 30% on 4-way cluster and 20% on 2-way cluster. On the other hand, 

the performance of GridRPC program is determined by the larger, the better size of data sets, in 

other words, the computation time for remote calls. Even though the GridRPC code suffers a 

desperately poor performance with the execution time is almost twice as long as that of the 

hybrid code with the smallest data set of 10,000 bodies, the peak performance gained in case of 

100,000 bodies is superior to the hybrid code’s performance, approximately 10% faster. The 

performance is further improved by an increased number of processors, a great merit brought by 

the GridRPC model which outweighs the cluster model in terms of maximizing the use of 

resources and producing higher throughput. 
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1 Introduction 
Large-scale highly parallel systems based on cluster of SMP architecture are today’s 

dominant computing platforms which enable many different parallel programming paradigms. 

Optimal paradigms enable application developers to use the hardware architecture in the most 

efficient way, i.e., without any overhead induced by the programming paradigm. On distributed 

memory systems, MPI [23] is widely used for writing message passing programs across the 

nodes of a cluster while OpenMP [24] is a popular API for parallel programming on shared 

memory architecture. As a result, a combination of shared memory and message passing 

paradigms within the same application, hybrid programming, is expected to provide a more 

efficient parallelization strategy for clusters of SMP nodes. The hybrid MPI-OpenMP approach 

supports multiple levels of parallelism on an SMP cluster where MPI is used to handle 

parallelism across nodes and OpenMP is employed to exploit parallelism within a node. 

There have been many efforts for porting message passing applications to hybrid applications, 

leaving both opportunities and challenges of getting higher performance with this model. The 

implementation, development and performance of hybrid program applications are discussed in 

[6]. The results demonstrate that this style of programming is not always be the most effective 

mechanism but can enjoy significant benefits from some situations. Similarly, the results from 

comparing MPI with MPI-OpenMP for the NAS benchmarks [17] are clearly application-

dependent. The hybrid approach becomes better when processors make the communication 

performance considerable and the level of parallelization is sufficient. Bush et al. [19] also 

prove that hybrid MPI-OpenMP codes can give substantial performance on kernel algorithms 

such as Cannon’s matrix multiply although it requires a large amount of work involved to 

succeed. Recently, the hierarchical image data structure of MPEG bit-stream was exploited by 

the hybrid model to accomplish a significant performance improvement of 18% compared to the 

MPI MPEG-2 encoder [4].  

However, even if the hybrid model is likely to offer an improved performance for parallel 

solutions on SMP clusters, these separate clusters alone are not sufficient to perfectly satisfy the 

need to perform large numbers of complex computations. Rather, given the ability to integrate 

heterogeneous resources, Grid [7] is going to be a practical infrastructure for large-scale 

scientific applications. Therefore, gridifying existing applications to maximize the use of 

resources is an emerging trend coming with increasingly popular grids. One of the most 

attractive and practical programming model on grids is GridRPC [9] which is based on a 

Remote Procedure Call mechanism tailored for the grid. The GridRPC API is designed to 

address one of the factors that has hindered widespread acceptance of grid computing – the lack 
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of a standardized, portable and simple programming interface and provide remote library access 

and task-parallel programming model on the grid. Some representative GridRPC systems 

include GridSolve/NetSolve [25], and Ninf [26].  

Providing simple, yet powerful, client-server-based frameworks for programming on the Grid, 

those systems have been successfully applied in various grid application projects. The design, 

implementation and performance evaluation of a suite of GridRPC programming middleware 

called Ninf-G2 is reported in [10]. The performance of Ninf-G2 evaluated using a weather 

forecasting system indicates that high performance can be attained even in relatively fine-

grained task-parallel applications on hundreds of processors in a grid environment. A 

straightforward but effective scheme for parallel execution of SimSET, Monte Carlo simulation 

software for emission tomography, using NetSolve is described in [13]. When compute speeds 

and sustained workloads are taken into account, the speedup is essentially linear in the number 

of equivalent “maximum-service” processors. Also by using NetSolve, a framework of 

applications integration on the grid is proposed for efficiently solving a large-scaled and 

complicated optimization problem [14]. 

This research is aimed at parallelizing the treecode algorithm [22] for N-Body simulation and 

making performance comparison among three different parallel programming paradigms, MPI, 

hybrid MPI-OpenMP, and GridRPC. By so doing, some certain classes of applications well 

suited to the hybrid and GridRPC models are thought to be found. N-Body is a classical 

problem, and appears in many areas of science and engineering, including astrophysics, 

molecular dynamics, and graphics. In the treecode algorithm simulating the interaction among 

the bodies, the workload for calculating the forces on the bodies accounts for upwards of 90% 

of the cycles in typical computations. This specialty makes the treecode eminently suitable for 

exploiting multiple levels of parallelism with the hybrid model and obtaining parallelism with 

multiple asynchronous GridRPC calls in the GridRPC model. In the hybrid implementation, the 

workload of the force calculation is shared among light-weight OpenMP threads after ORB 

domain decomposition among MPI processes. Moreover, the removal of redundant MPI intra-

node communication and adoption of loop scheduling for OpenMP threads with appropriate 

chunk size ensure load balance and enhance performance of the hybrid program. Meanwhile, in 

the GridRPC implementation, this workload is divided among the compute nodes by 

simultaneously calling multiple GridRPC requests to them. The NetSolve middleware is utilized 

to construct a preliminary GridRPC computing system which consists of multiple clusters for 

evaluating the performance of the GridRPC code. The performance of the GridRPC version is 

then compared to that of MPI and hybrid versions with data sets of 10,000, 50,000, and 100,000 
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bodies in 10 time-steps on 3 clusters in which there are 2 clusters of SMP architecture, one with 

4 quad-processor nodes and the other with 16 dual-processor nodes.  

The rest of the dissertation is structured as follows. Section 2 presents and compares the MPI, 

hybrid MPI-OpenMP and GridRPC parallel programming paradigms. The N-Body problem and 

treecode algorithm for solving this problem are described in Section 3. Section 4 outlines 

parallelism achieving methods and implementation of the treecode algorithm with MPI, hybrid 

and GridRPC models. Section 5 analyzes the experimental results and gives some discussions. 

Finally, the study is concluded in section 6. 
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2 Parallel programming paradigms 

2.1 MPI and Hybrid MPI-OpenMP programming models 

MPI has apparently become the most popular message passing library standard for parallel 

programming. The message passing model assumes that the underlying hardware is a collection 

of processors, each with its own local memory, and an interconnection network supporting 

message passing among processors. A processor has direct access only to the instructions and 

data stored in its local memory and processes pass messages both to communicate and to 

synchronize with each other. Processor 1 may send a message containing some of its local data 

values to processor 2, giving processor 2 indirect access to these values as displayed in Figure 1. 

 

Figure 1. Data transfer by message passing in MPI model. 

Message passing codes written in MPI are obviously portable and should transfer easily to 

clustered SMP systems. Although message passing may be necessary to communicate between 

nodes, it is not immediately clear that this is the most efficient parallelization technique within 

an SMP node. In theory, a shared memory model such as OpenMP should offer a more effective 

method within an SMP node. SMP clusters can be considered as a hierarchical two-level 

parallel architecture since they combine features of shared and distributed memory machines. 

Hence, a combination of both shared memory and message passing parallelization paradigms 

within the same application, hybrid MPI-OpenMP programming, may provide a strategy for 

exploiting distributed shared-memory architecture better than pure MPI. 

Often, hybrid MPI-OpenMP model refers to a programming style in which communication 

between nodes is handled by MPI processes and each MPI process has several OpenMP threads 

running inside to occupy the CPUs of an SMP node. The number of OpenMP threads is equal to 

the number of CPUs in one SMP node and there are as many MPI processes as nodes in the 
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cluster. This programming style involves a hierarchical model: MPI parallelization occurring at 

the top level, and OpenMP parallelization occurring below. For example, Figure 2 shows a 2D 

grid which has been divided geometrically between four MPI processes. These sub-arrays have 

been further divided among three OpenMP threads and mapped to the architecture of an SMP 

cluster.  

Process 0 Process 1 Process 2 Process 3

OpenMP

Thread 0
Thread 1
Thread 2

MPI

2D Array

OpenMP

Thread 0
Thread 1
Thread 2

OpenMP

Thread 0
Thread 1
Thread 2

OpenMP

Thread 0
Thread 1
Thread 2

M
PI

O
penM

P
m

ulti-threads

 

Figure 2. Hybrid MPI-OpenMP programming model applied to a 2D array.  

Nonetheless, this style, called process-to-process communication method, is only one of two 

main different hybrid programming styles characterized by whether OpenMP threads take part 

in communication between nodes or not. In process-to-process communication, MPI routines 

are invoked outside OpenMP parallel regions, thus there is only MPI communication between 

nodes. On the other hand, in thread-to-thread communication, some MPI routines are placed 

inside OpenMP parallel regions, leading to OpenMP threads’ involvement in inter-node 

communication. Each style has different merits and demerits, and appropriate for different 

classes of applications [5]. For the implementation of N-Body problem, the process-to-process 

model is suitable because parallelizing the specific time-consuming routines using lighter-

weight OpenMP threads without having to communicate with each other is more effective. 

In addition to the ability to support multiple levels of parallelism on an SMP cluster, the 

hybrid model outweighs the pure MPI model in terms of communication overhead. It requires 
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only inter-node communication between nodes since intra-node communication is substituted 

by direct access to the shared memory. Meanwhile, with pure MPI, additional intra-node 

communication is necessary within each node between MPI processes as illustrated in Figure 3. 

This benefit of hybrid programming is even more important, since the gap between intra-node 

communication and inter-node communication is significantly narrowed by rapid 

communication networks. 
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Figure 3. Communication pattern in MPI and hybrid programming models. 

2.2 GridRPC programming model 

GridRPC is a programming model based on Remote Procedure Call mechanism tailored for 

the grid. In 2005, the GridRPC API was published as a proposed recommendation by the Grid 

Remote Procedure Call Working Group [28]. Although when viewed at a very high level, the 

programming model provided by GridRPC is that of standard RPC plus asynchronous, coarse-

grained parallel tasking, actually there are a variety of features that will largely hide the 

dynamic, insecure, and unstable aspects of the grid from programmers. This section introduces 

the GridRPC model, the functions that comprise the API, and how GridRPC applications run on 

the grid using NetSolve as the GridRPC programming middleware.  

2.2.1 The GridRPC model  

Figure 4 depicts the GridRPC model. The functions shown here are very fundamental and 

appear in a number of other systems. A service which can be either a computation service or a 

data service registers with a registry. A client subsequently contacts the registry to look up a 
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desired service and the registry returns a handle to the client. The client then uses the handle to 

call the service which eventually returns the results. 

Registry

Client Service

(2) Handle

(1) Lookup
Register

(3) Call

(4) Results
 

Figure 4. The GridRPC model. 

Two fundamental objects in the GridRPC model are function handles and session IDs. The 

function handle represents a mapping from a function name to an instance of that function on a 

particular server. Once a particular function-to-server mapping has been established by 

initializing a function handle, all RPC calls using that function handle will be executed on the 

server specified in that binding. A session ID is an identifier representing a particular non-

blocking RPC call. A session ID is used throughout the API to allow users to get the status of a 

previously submitted non-blocking call, to wait for a call to complete, to cancel a call, or to 

check the error code of a call. 

2.2.2 The GridRPC API 

The functions that comprise the GridRPC API fall into four main groups: initializing and 

finalizing functions, remote function handle management functions, GridRPC call functions, 

and asynchronous GridRPC control and wait functions. Table 1 gives an overview of the 

principal GridRPC API functions. The initialize and finalize functions are similar to the MPI 

initialize and finalize calls. GridRPC client calls before initialization or after finalization will 

fail. The function handle management group of functions allows creating and destroying 

function handles. The GridRPC call functions are available for end-users to call the desired 

service. Asynchronous GridRPC control and wait functions are applied to previously submitted 

non-blocking requests. 
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Table 1. GridRPC API functions 

Initializing and finalizing functions 
grpc_initialize reads the configuration file and initializes the required modules 

grpc_finalize releases any resources being used by GridRPC 

Remote function handle management functions 
grpc_function_handle

_default 
creates a new function handle using the default server 

grpc_function_handle

_init 

creates a new function handle with a server explicitly specified by 

the user 

grpc_function_handle

_destruct 
releases the memory associated with the specified function handle

grpc_get_handle returns the function handle corresponding to the given session ID

GridRPC call functions 

grpc_call 
makes a blocking (synchronous) remote procedure call with a 

variable number of arguments 

grpc_call_async 
makes a non-blocking (asynchronous) remote procedure call with 

a variable number of arguments 

grpc_call_argstack makes a blocking call using the argument stack 

grpc_call_argstack_as

ync 
makes a non-blocking call using the argument stack 

Asynchronous GridRPC control and wait functions 
grpc_probe checks if the asynchronous GridRPC call has completed  

grpc_cancel cancels the specified asynchronous GridRPC call 

grpc_wait waits for the specified session to end 

grpc_wait_and 
blocks until all of the specified non-blocking requests in a given 

set have completed 

grpc_wait_or 
blocks until any of the specified non-blocking requests in a given 

set has completed 

grpc_wait_all 
blocks until all previously issued non-blocking requests have 

completed 

grpc_wait_any 
blocks until any previously issued non-blocking request has 

completed 
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2.2.3 The NetSolve system with GridRPC API implementation 

The GridRPC API is fully implemented on top of the NetSolve system [8] to bring together 

disparate computational resources with a view to using their aggregate power and dominating 

the rich supply of services supported by the emerging grid architecture. Basically, it is a RPC 

based client/agent/server system that allows users to remotely access both hardware and 

software components as shown in Figure 5. At the top tier, the client library is linked in with the 

user's application which then makes calls to GridRPC API for specific services. Through the 

API, the client application gains access to aggregate resources without having to know how 

remote resources are involved.  

 

Figure 5. The NetSolve system with full implementation of the GridRPC API. 

The agents maintain a database of all servers along with their capabilities and dynamic usage 

statistics which it uses to allocate server resources for client requests, ensuring load balancing 

and fault tolerance by keeping track of failed servers. NetSolve employs a load-balancing 

strategy that takes into account several system parameters, such as network bandwidth and 

latency, server workload and performance, and complexity of the function to be executed. To 

facilitate detection of server failures and network problems, the Network Weather Service 

(NWS) is integrated. The network authentication protocol Kerberos is also supported to provide 

strong authentication for client/server applications by using secret-key cryptography.  

The server is a daemon process that awaits client requests and executes remote functions on 

behalf of clients. The server can run on single workstations, clusters of workstations, symmetric 

multi-processors or machines with massively parallel processors. A key component of the server 
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is a source code generator which parses a problem description file (PDF). This PDF contains 

information that allows the system to create new modules and incorporate new functionalities. 

In essence, the PDF defines a wrapper that the system uses to call functions being incorporated.  

In reality, from the user’s perspective the mechanisms employed by NetSolve system make 

the GridRPC calls fairly transparent. Nevertheless, behind the scenes, a typical call to the 

system involves a number of phases, as follows. 

1. Client contacts the agent for a list of capable servers that can execute the desired 

function. 

2. The agent returns a list of available servers. 

3. Client contacts server and sends input parameters. 

4. Server runs appropriate service and returns output parameters or error status to client. 

2.3 Comparison among MPI, hybrid and GridRPC programming models 

MPI is undoubtedly the most well known programming model for data-parallel applications 

using message passing. Besides, the hybrid model comes with the benefit of exploiting multiple 

levels of parallelism, MPI level and OpenMP level. Even so, both MPI and hybrid have some 

difficulties with programming and weak capability for tolerance to faults. When compared with 

MPI and hybrid, GridRPC has several advantages such as it provides programmers with an 

easier way to obtain parallelism, it can use the resources on the grids, it has better capability for 

tolerance to faults, and it can adapt heterogeneity and dynamic behavior of grids. But on the 

other hand, there exist a number of problems in the GridRPC model. The heterogeneous 

environment may include networks with small communication capacity, causing a delay in 

communicating among processing elements. The preparation time needed for calling and 

returning results, i.e. the initialization time and finalization time, is much higher than the 

message passing model. Also, additional effort is required for deploying modules responding to 

remote calls on all the servers of a GridRPC computing system, i.e., the installation and 

registration of a service to the registry in the system to make it available to clients. Table 2 

summarizes and compares some important characteristics between MPI, hybrid and GridRPC 

programming models. 
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Table 2. MPI and hybrid vs. GridRPC 

 MPI and hybrid GridRPC 

Parallelism Mainly data parallel Mainly task parallel 

Model Single program multiple data Client/server 

API MPI, plus OpenMP for hybrid GridRPC API 

Ease of programming Difficult to parallelize 
Easy to implement from 

existing sequential codes 

Fault tolerance Poor Good 

Load balancing 
Totally done by programmers 

if schedulers are unavailable 
Integrated self-schedulers  

Communication Usually fast 
Dependent upon the 

environment 

Preparation time 
Low initialization and 

finalization time 

Overhead by high initialization 

and finalization time 

Deployment  Unnecessary Necessary 

Security 
Not a problem in case of 

clusters  

An important issue in case of 

grids 

Resources Intended for clusters Intended for grids 

Reputation Popular Emerging and evolving 



 

 12 

3 The treecode algorithm for N-Body simulation 

3.1 The N-Body problem 

The N-Body problem is concerned with determining the effects of forces between “bodies” 

and appears in many areas, including molecular dynamics, fluid dynamics and graphics. Let us 

examine the problem in terms of astronomical systems called the gravitational N-Body 

problems. The objective is to find the positions and movements of the bodies in space (say 

planets), i.e. their subsequent motions given the initial positions, masses, and velocities that are 

subject to gravitational forces from other bodies as identified by Newtonian laws of physics. In 

1687 Isaac Newton formulated the principles governing the motion of two bodies under the 

influence of their mutual gravitational attraction. 

We review the equations governing the motion of the bodies according to Newton's laws of 

motion and gravitation [29]. We assume for now that the mass m, position (rx, ry) and velocity 

(vx, vy) of each body is known. In order to model the dynamics of the system, we must know the 

total force exerted on each body. Newton's law of universal gravitation asserts that the strength 

of the gravitational force between two bodies is given by the product of their masses divided by 

the square of the distance between them, scaled by the gravitational constant G, which is 6.67 × 

10-11 Nm2 / kg2. The pull of one body towards another acts on the line between them. Since we 

will be using Cartesian coordinates to represent the position of a body, it is convenient to break 

up the force into its x and y components (Fx, Fy) as can be seen in Figure 6. 

 

Figure 6. The calculation of force between two bodies. 

Each body will feel the influence of each of the other bodies based on the law of universal 

gravitation above, that is the gravity interaction between all pairs of bodies except of self-

interaction, and the forces will sum together. The principle of superposition says that the total 

force acting on a body in the x or y direction is the sum of the pair-wise forces acting on the 

body in that direction. 
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The new position and new velocity of i-th body must be calculated from the known 

acceleration. Subject to the forces, the acceleration of a body according to Newton's second law 

of motion is given by:  

m
Fa =  

Hence, all the bodies will move to new positions due to these forces and have new velocities.  

For a computer simulation, we use values at particular times, t0, t1, t2, etc., with the time 

interval tΔ . Then, for a body of mass m, the force is given by: 

t
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Δ
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and a new velocity 

m
tFvv tt Δ

+=+1  

where vt+1 is the velocity of the body at time t + 1 and vt is the velocity of the body at time t. If a 
body is moving at a velocity v over the time interval tΔ , its position changes by: 

tvrr tt Δ=−+1  

where rt is its position at time t. Once bodies move to new positions, the forces change and the 
computation has to be repeated. 

However, the velocity is not actually constant over the time interval tΔ , and thus only an 

approximate answer is obtained. For a more accurate solution, we can use the leapfrog finite 

difference approximation scheme to numerically integrate the above equations. In the leapfrog 

scheme, we maintain the position and velocity of each body, but they are half a time step out of 

phase. The velocity and position are computed alternatively, i.e., 
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and 

tvrr ttt Δ=− ++ 2/11  
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In a three-dimensional space having a coordinate system (x, y, z), the distance between the 

bodies at (x1, y1, z1) and (x2, y2, z2) with the masses m1,m2 is given by 

2
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12 )()()( zzyyxxr −+−+−=  

The forces are resolved in the three directions, using: 
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The basic algorithm for N-Body simulation is outlined below. 

t = 0 

while t < t_final 

for i = 1 to n          // n = number_of_bodies 

 // compute force on body i  

f(i) = sum[ j=1,...,n,  j != i ] f(i,j)   

  //Calculate its acceleration (ax, ay) at time t using its force at time t  

a
x
 = F

x
 / m 

a
y
 = F

y
 / m 

  // Calculate the updated velocity based on the accelerations 

v
x
 = v

x
 + dt a

x
 

v
y
 = v

y
 + dt a

y
 

// The resulting positions are given by 

r
x
 = r

x
 + dt v

x
 

r
y
 = r

y
 + dt v

y
 

// move body i under force f(i) for time dt 

 end for 

 t = t + dt              // dt = time interval 

end while 
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3.2 The clustering approximation 

The basic algorithm outlined above actually models a dynamical evolution of bodies with a 

direct N-Body simulation. In the framework of this direct algorithm, each body interacts with (N 

– 1) other bodies. The interactions must be carried out for each of the N bodies. In order to 

evaluate force interactions of the system composed of the N bodies, N * (N – 1) computations 

are needed; that is nearly N2 computations. The direct computation is an O(N2) algorithm and 

not feasible to be applied for most interesting N-Body problems when N is very large. 

Fortunately, it turns out that there are clever divide-and-conquer algorithms which only take 

O(NlogN) time. Among them, the treecode, or Barnes-Hut algorithm is the most widely used 

algorithm for N-Body simulation. 

The crucial idea used in the treecode algorithm to reduce the time complexity is to group 

nearby bodies and approximate them as a single body. If the group is sufficiently far away, we 

can approximate its gravitational effects by using its center of mass. More mathematically, if the 

ratio 
r
D

 (
massofcenter   todistance

group  theof bodies containingbox  of size
) is small enough, the group is treated 

as a single point, located at the center of mass and with a mass equal to the total mass of all the 

bodies of the group as illustrated in the case of viewing the Andromeda galaxy from the earth in 

Figure 7.  

Andromeda galaxy
Earth

x = location of center of mass

r

Approximation

Earth
Andromeda

x

 

Figure 7. The clustering approximation approach. 

The center of mass of a group of bodies is the average position of a body in that group, 

weighted by mass. Formally, if two bodies have positions (x1, y1) and (x2, y2), and masses m1 and 

m2, their total mass and center of mass (x, y) are given by: 

21 mmm +=  

m
mxmxx 2211 +

=  
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m
mymyy 2211 +

=  

This clustering approximation idea is hardly new. Indeed, Newton modeled the earth as a 

single point located at its center of mass in order to calculate the attracting force on the falling 

apple, rather than treating each tiny particle making up the earth separately. What is new and 

more important is applying this idea recursively. Within the Andromeda galaxy, this geometric 

picture repeats itself as shown in Figure 8. As long as the ratio D1/r1 is also small, the bodies 

inside the smaller box can be replaced by their center of mass in order to compute the 

gravitational force on, say, the planet Vulcan. This nesting of boxes within boxes can be 

repeated recursively. 

Andromeda galaxyAndromeda galaxy
Earth r x

(Magnify)

x

Vulcan

r1D1

D1

 

Figure 8. Replacing clusters by their center of mass recursively. 

3.3 Recursive division of space and the resulting tree 

What we need is a data structure to subdivide space that makes this recursion easy. The 

treecode algorithm is a clever scheme for grouping together bodies that are sufficiently nearby 

by recursively dividing the set of bodies into groups and storing them in a quad-tree for 2D 

space or oct-tree for 3D space. As described in Figure 9, the root (the topmost node) represents 

the whole space which can be broken into four smaller squares of half the perimeter and a 

quarter the area each; these are the four children of the root. Each child can in turn recursively 

be broken into quadrants to get its children until each contains 0 or 1 body. If there is only one 

body in the square left, it is stored as a leaf in the tree structure. When the square is empty, it is 

ignored. Hence, some internal nodes may have fewer than 4 non-empty children. Each leaf 
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represents a single body. Each internal node represents the group of bodies beneath it, and stores 

the center of mass and the total mass of all its children bodies.  

root

leaf leaf leaf

leafleaf

leaf leaf

node

node

 

Figure 9. Recursive division of 2D space and the resulting quad-tree. 

Once the tree construction phase is finished, we come to the core of the algorithm, computing 

the force acting on every single body in the system by traversing the tree from its root. If the 

center of mass of the current node is sufficiently distant from the selected body, the force is 

computed as the force acting between the selected individual body and the node. If the distance 

between the selected body and the node (its center of mass) is not sufficient then the node is 

“opened” and a distance check is performed between all of its leaves or sub-nodes and the 

selected body (Figure 10). This is executed repeatedly.  

Selected body

Selected body

If the node is sufficiently far away
Distant node

Node too close

else

the computation of force is 
performed between them 

the distance check is applied to all 
leaves and sub-nodes of the node  

Figure 10. The recursive distance check between the selected body and nodes. 
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In order to determine if a node is sufficiently far away, the idea for clustering approximation 

presented earlier is applied to compute the ratio
r
D

, where D is the size of the region 

represented by the internal node, and r is the distance between the body and the node's center of 

mass. If the ratio 
r
D

 is less than θ , then the internal node is sufficiently far away, where θ  is a 

constant called the opening angle, 10 ≤≤θ .  

3.4 Example 

As a concrete example for force calculation in this algorithm [30], let us consider the 5 bodies 

and the corresponding tree in Figure 11. The root node contains the center of mass and total 

mass of all five bodies a, b, c, d, and e, which have masses 1, 2, 3, 4, and 5 kg, respectively. 

With two other internal nodes, each contains the center of mass and total mass of the bodies b, c, 

and d. We start at the root node to calculate the force acting on body a, for instance. The force 

calculation proceeds through a couple of steps: 

 

Figure 11. The steps for calculating the force acting on body a. 

Step 1: The first node examined is the root. The ratio D/r = 100/55.7 > θ  = 0.5, so we 

perform the process recursively on each of the root's children.  

Step 2: The first child is body a itself. A node does not exert force on itself, so we don't do 

anything. 
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Step 3: This child represents the northeast quadrant of the space, and contains the center of 

mass of bodies b, c, and d. Now D/r = 50/77.4 > θ  so we recursively calculate the force exerted 

by the node's only child. 

Step 4: This is also an internal node, representing the northeast quadrant of its parent, and 

containing the center of mass of bodies b, c, and d. Now D/r = 25/77.4 < θ . Treating the 

internal node as a single body whose mass is the sum of the masses of b, c, and d, we calculate 

the force exerted on body a, and add this value to the total force exerted on a. Since the parent 

of this node has no more children, we continue examining the other children of the root. 

Step 5: The next child is the one containing body e. This is a leaf, so we calculate the pair-

wise force between a and e, and add this to a's total force. 

The treecode algorithm is fast because we don't need to individually examine any of the 

bodies in a group after the clustering approximation is applied. Just like in the example, when 

the internal node containing b, c, and d is approximated as a single body, we only need to 

calculate the force between a and this body instead of every body in that node. This approach 

leads to the reduction of required interactions and to the decrease of computational complexity 

to O(NlogN). Constructing the tree requires a time of O(NlogN), and so does computing all the 

forces, so that the overall time complexity of the method is O(NlogN). It is a substantial 

improvement over the direct summation method with O(N2) complexity.  

3.5 Related work on parallelization of the treecode algorithm 

During the past decades, N-Body treecode has been applied successfully to various problems 

in galaxy dynamics, galaxy formation and cosmological structure formation. Owing to a strong 

desire to increase the size and speed of both galactic and cosmological simulations, there have 

been many efforts to parallelize the treecode algorithm using different programming models on 

several diverse parallel machines. A parallel treecode is introduced in [11] with a domain 

decomposition based on the orthogonal recursive bisection of the N-Body volume into 

rectangular sub-volumes for the purpose of load balance. The code is written with MPI to 

handle the message passing on the Cray T3D, Paragon and the IBM PS/2. A PC-based parallel 

treecode has also been developed [31]. In this implementation, another well-known message 

passing library software, PVM (Parallel Virtual Machine), serves as the background for 

processors on clusters of personal computers to communicate with each other. The performance 

of a PGHPF (Portland Group High Performance Fortran) program running on a Cray T3E 

computer is reported in [15]. It is based on a dynamic and adaptive method for the domain 

decomposition, which makes use of the hierarchical data arrangement by the treecode. 



 

 20 

Despite the fact that a wide variety of programming models have been utilized to parallelize 

the treecode algorithm, the hybrid MPI-OpenMP and GridRPC paradigms have been 

surprisingly excluded. The hybrid model is an emerging trend for fully exploiting SMP clusters 

while the GridRPC is evolving to provide a model for gridifying applications to maximize the 

use of resources. More importantly, the sequential treecode has one specialty which should be 

carefully taken into account in parallelization of the algorithm. That is, the specific routine for 

calculating the forces on the bodies accounts for upwards of 90% of the cycles in typical 

computations. It is deemed eminently suitable for obtaining higher level of parallelism with 

light-weight OpenMP threads in the hybrid MPI-OpenMP programming model and with 

multiple asynchronous GridRPC calls in the GridRPC programming model. This aspect is 

thought to have a positive effect on improving performance of the hybrid and GridRPC 

solutions to the treecode. 
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4 Parallelization of the treecode algorithm 

4.1 MPI parallelization  

4.1.1 ORB domain decomposition  

The sequential treecode algorithm works well but the parallelization of the treecode is not 

immediately obvious since the tree is very unbalanced when the bodies are not uniformly 

distributed in their bounding box. The main difficulty is that both the bodies and the tree 

structure must somehow be distributed in a balanced way among many independent processors. 

Hence, it is important to divide space into domains with equal workloads to avoid load 

imbalance. As a result, the Orthogonal Recursive Bisection (ORB) domain decomposition [11] 

is adopted to divide the space into as many non-overlapping subspaces as processors, each of 

which contains an approximately equal number of bodies, and assign each subspace to a 

processor. It works as follows. First, a vertical line is found that divides the area into two areas 

each with an approximately equal number of bodies. Next, for each area, a horizontal line is 

found that divides it into two areas each with an equal number of bodies. This is repeated until 

there are as many areas as processors, and after that one processor is assigned to each area. 

Figure 12 shows an example of the ORB division in 2D space on 16 processors. 

 

Figure 12. ORB domain decomposition in 2D space on 16 processors. 

4.1.2 Construction of locally essential trees 

Nonetheless, after the domain decomposition, each process has only the local tree for local 

bodies. In principle, they need the global tree to determine the forces due to the effect of 

influence ring along the borders. For example, node n belonging to process 0 has influence on 

bodies along the borders with P1, P2, and P3 as displayed in Figure 13, recall that θ is a 

constant called the opening angle. Thus node n, as well as other necessary nodes which 
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represent clusters of bodies, are called essential and must be known by P1, P2, and P3 to 

compute the forces of bodies in the influence ring of n. Those bodies that are not in the 

influence ring are either too close to node n to apply the clustering approximation, or far away 

enough to use n's parent's information, therefore n will be essential to only bodies within its 

influence ring. Because it is too expensive to import an entire copy of the global tree to all the 

processors, a Locally Essential Tree (LET) for each processor is built instead.  

n

Influence ring of n

Node n is 
exported 
from P0 to 
local tree of 
P1 (and P2, 
P3 too)

P0

P1
P2

P3

Local tree of P0

Local tree of P1

n

n

root

root
D

ｒ

θ
Dr =

 

Figure 13. ORB decomposition and the influence ring of a node. 

A LET of a processor is actually an extension of the local tree for its set of bodies which 

contains all the nodes of the global tree that are essential for the bodies contained within that 

processor, allowing the processor to run the sequential treecode for computing forces of its own 

bodies independently without requiring the global tree. Consequently, a processor only needs to 

import sub-trees from distant processors which it can insert on to its existing structure to create 

the locally essential tree. The criterion applied to determine if a node from a distant domain is 

essential and should be imported to the current domain is called the group-opening criterion. We 

let n be a node in the domain of processor 0, D(n) be the length of a side of the square 

corresponding to n, and r(n) be the shortest distance from n to the domain owned by processor 1 

as depicted in Figure 14. Then if the ratio 
)(
)(

nr
nD

is greater than or equal to θ , n is essential to 

processor 1 and be a part of the sub-tree exported from processor 0 to processor 1.  
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                   Domain of P0

Domain of P1

r(n)
D(n) n

 

Figure 14. The group-opening criterion for determining essential nodes. 

Practically, the locally essential trees are constructed in the following manner. After building 

the local tree, each processor imports the root nodes of the trees from all of the others. A local 

binary tree is built from the base up in each processor using the imported root nodes (Figure 

15a). A walk through the binary tree using a group opening-criterion determines which 

processors must be examined further to gather more tree nodes if necessary. Tree walks are 

performed in the needed processors using the group opening criterion of the requesting 

processors. The essential nodes which satisfy the criterion are gathered together and exported to 

the calling processor. The sub-trees are inserted at the appropriate node of the binary tree 

(Figure 15b). The result of this procedure is the locally essential tree which contains the binary 

tree structure with the local tree and the sub-trees imported from other processors (Figure 15c). 

Once each processor has its own LET, they can proceed exactly as in the sequential case. 

(a) Local binary tree of P1 is 
built using the imported root 
nodes

(b) Local binary tree of P1 after 
receiving essential nodes from 
P0

(c) The LET of P1 contains 
the binary tree structure with 
the local tree and sub-trees 
imported from all of the 
others  

Figure 15. The construction of P1’s LET, assuming there are 4 processes P0, P1, P2, and P3. 

If θ≥
)(
)(

nr
nD

then n is essential to P1
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4.1.3 Summary and an example 

In summary, the parallel treecode involves several steps as follows. 

1. ORB domain decomposition across processors. 

2. Construct the local trees. 

3. Exchange tree nodes to construct the locally essential trees. 

4. Walk through trees to calculate forces (sequential treecode algorithm from this step). 

Figure 16 illustrates an example of the parallel treecode described previously with 2 

processors in use. 20 bodies in the original domain are divided equally to these two processes so 

that each has 10 bodies. Further on, each process constructs the local tree for its own bodies. 

After that each process collects all the nodes in its domain deemed essential to the other based 

on the group-opening criterion, and exchanges these nodes directly with each other afterwards. 

Once two processes have received and inserted essential nodes into the local tree, they have 

their own LET and can carry out the sequential treecode for force calculation. The force on a 

body represented by a leaf in the system is evaluated by traversing down the tree from root. At 

each level, a node is added to an interaction list if it is distant enough for a force evaluation. 

Otherwise, the traversal continues recursively with the children. This procedure results in a list 

of interactive nodes for each body, for instance the body number 1 has 3 nodes in its list that 

contribute to the total force. The accumulated list of interactive nodes and bodies is then looped 

through to calculate the force on the given body.  
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Figure 16. An example of the parallel treecode with 2 processors. 

4.2 Multiple levels of parallelism with the hybrid model 

4.2.1 MPI level and OpenMP level 

In the hybrid implementation, multiple levels of parallelism are achieved as shown in Figure 

17. For the first level using MPI parallelization, the hybrid program works exactly like the MPI 

one. The bodies are distributed in a balanced way among the MPI processes using ORB domain 

decomposition. After the local trees have been constructed, the processes collect and exchange 

essential nodes to each other to insert into and expand the local trees to LETs. Each process then 

walks through its own tree to create a list of interactive nodes for each body similar to the case 

of sequential algorithm. For the second level by OpenMP parallelization, the force calculation 

which accounts for upwards of 90% of the cycles in typical computations is eminently suitable 

for obtaining parallelism with OpenMP work-sharing threads running in each MPI process. The 
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bodies and their corresponding list of interactive nodes are assigned to different threads for 

calculating the force on each body. Hence, the hybrid program is expected to speed up the 

performance. 
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Figure 17. Multiple levels of parallelism with the hybrid implementation. 

4.2.2 Loop scheduling methods of OpenMP threads 

Moreover, in OpenMP loop parallelization of hybrid MPI-OpenMP program, there is no 

guarantee that just because a loop has been correctly parallelized, its performance will improve. 

In fact, in some circumstances parallelizing the wrong loop can slow the program down. Even 

when the choice of loop is reasonable, some performance tuning may be necessary to make the 

loop run acceptably fast. Thus, among several mechanisms for controlling this factor provided 

by OpenMP, loop scheduling with static, dynamic and guided is employed to ensure sufficient 

work with better load balance for OpenMP threads.  

In static scheduling, iterations are divided into chunks of size chunk until fewer than chunk 

remain. Chunks are statically assigned to processors in a round-robin fashion: the first thread 

gets the first chunk; the second thread gets the second chunk, and so on, until no more chunks 

remain. The iterations are also divided into chunks of size chunk in dynamic scheduling, 

similarly to a static scheduling. Nevertheless, chunks are assigned to threads dynamically on a 

“first come, first do” basis; when a thread finishes one chunk, it is dynamically assigned another. 

Lastly, in the guided scheduling, for a chunk size of 1, the size of each chunk is proportional to 

the number of unassigned iterations divided by the number of threads, decreasing to 1. For a 
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chunk size with value k greater than 1, the size of each chunk is determined in the same way 

with the restriction that the chunks do not contain fewer than k iterations (except for the last 

chunk to be assigned, which may have fewer than k iterations). Chunks are dynamically 

assigned to threads just like dynamic scheduling. Figure 18 summarizes these 3 types of loop 

scheduling.  

Chunk

Thread 0 Thread 1 Thread 2 Thread 3

Chunk Chunk Chunk Chunk Chunk Chunk Chunk ChunkChunk

Thread 0 Thread 1 Thread 2 Thread 3

Chunk Chunk Chunk Chunk Chunk Chunk Chunk Chunk

Chunk

Thread 0 Thread 1 Thread 2 Thread 3

Chunk Chunk Chunk

(a) Static: Each thread is assigned chunks with equal size chunk in a "round robin" fashion

(b) Dynamic: Threads are assigned chunks with equal size chunk on a "first-come, first-do" basis

(c) Guided: The size of each chunk is proportional to the number of unassigned iterations 
divided by the number of threads

Chunk

Thread 0 Thread 1 Thread 2 Thread 3

Chunk Chunk Chunk Chunk Chunk Chunk Chunk ChunkChunk

Thread 0 Thread 1 Thread 2 Thread 3

Chunk Chunk Chunk Chunk Chunk Chunk Chunk Chunk

1 1 1 1 2 3 4 5
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Figure 18. Static, dynamic and guided loop scheduling methods of OpenMP threads. 

4.2.3 Operation of the hybrid implementation 

The following section briefly presents pseudo code of the hybrid program. 

{ 

… 

MPI_Initialize(); 

ORB_domain_decomposition(MPI_processes, bodies); 

Constructs_the_local_tree_code(my_bodies); 

Build_the_LET(MPI_processes); 

#pragma omp parallel for private (n) schedule (type) 

//The workload here is divided among OpenMP threads 

For body#0 to body#n in list of bodies { 

Calculate_forces(interaction_list); 

} 

Move_bodies(my_bodies); 

MPI_Finalize(); 

… 

} 
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The operation of the hybrid implementation is demonstrated in Figure 19. Similar to the 

example for MPI program, two MPI processes are assigned two sub-domains of the original 

domain, each with an equal number of bodies. Next, they construct the local trees and exchange 

essential nodes with each other to build LETs. Finally, in each MPI process, the bodies and their 

corresponding list of interactive nodes are assigned to two different OpenMP threads for 

calculating the force on each body using static/dynamic/guided scheduling with appropriate 

chunk size.  
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Figure 19. Operation of the hybrid code with 2 MPI processes and 4 OpenMP threads. 
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4.3 Parallelization using asynchronous GridRPC calls 

So far, we have discussed the parallelization of treecode algorithm using MPI and hybrid 

MPI-OpenMP to develop implementations which are intended for clusters. With the existence 

of increasingly popular grids, gridifying existing applications to port them to a grid computing 

environment is an emerging trend for maximizing the use of resources. Fortunately, the 

workload of force calculation which accounts for most of the cycles is also perfect for obtaining 

parallelism with GridRPC calls and exploiting multiple clusters. A simplified description of the 

GridRPC implementation is illustrated in Figure 20.  
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Figure 20. Exploiting parallelism with simultaneous GridRPC calls. 

After the tree construction phase for the original domain, the list of interactive nodes for each 

body is built by walking through the tree. Since the calculation of the summation force on each 

body with its list of interactive nodes is completely independent from each other, the bodies and 

their corresponding lists of interactive nodes are divided among the servers by simultaneously 
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calling multiple asynchronous GridRPC requests to them. The list of bodies can be assigned to 

the servers dynamically by the agents or statically by the users. If the agents are responsible for 

the assignment, they will decide the number of bodies which the servers should execute 

automatically. Otherwise, the number of bodies for each server is explicitly specified by the 

users. In the figure, two GridRPC calls are initiated to run on two GridRPC servers at the same 

time; each is explicitly given 7 in a total of 14 bodies for force calculation. Actually parallelism 

achieving method in GridRPC system is quite similar to OpenMP parallelism in the hybrid 

MPI-OpenMP programming model as presented in the preceding section, but utilizing 

simultaneous GridRPC calls over separate servers instead of parallel OpenMP threads on 

different processors. 

In practice, there are two modules to be implemented, the server module for computing the 

forces and the client module for calling the server module. The server module receives input 

data, in particular the bodies and lists of interactive nodes, from the client module and returns 

the list of bodies with the updated force, position and velocity after each calculation. The 

implementation of the server module is deployed on all the servers together with the interface 

description file written in Interface Definition Language (IDL) to build the library. IDL is a 

language for describing interfaces for server functions and methods which are to be called by 

clients. The interface description file is then referred by the client program to learn how to 

correctly call the server module. 

The client program controls the execution of the whole computation. In the client module, 

because GridRPC client calls before initialization or after finalization will fail, they are 

surrounded by grpc_initialize and grpc_finalize for initializing and releasing resources. Once the 

initialization phase has been finished, grpc_function_handle_default is called for creating a new 

function handle to use the servers. Later on, the grpc_call_async API for asynchronous 

GridRPC calls is used in order to call the server module on servers remotely and concurrently 

with the handle. Consequently, the grpc_wait_all API is inserted after the asynchronous calls to 

wait for the completion of all of them for synchronization, followed by the 

grpc_function_handle_destruct to release the function handle after calling the remote function 

successfully. 

Furthermore, since the GridSolve/NetSolve middleware integrates a self-scheduler running on 

the agents which automatically allocates remaining jobs to idle servers and keeps track of failed 

ones, it is unnecessary to explicitly implement the load balancing portion in the client module. 

The client program which assigns the bodies and corresponding lists of interactive nodes to 

execute on servers for force calculation using GridRPC calls is outlined as follows. 
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{ 

… 

Constructs_the_tree(bodies); 

Build_lists_of_interactive_nodes(bodies); 

… 

grpc_initialize(); 

grpc_function_handle_default(“ComputeForces”); 

/* calling multiple asynchronous GridRPC requests for force calculation on 

servers */ 

foreach body 

grpc_call_async(handle,current_body,current_list_of_interactive_nodes); 

grpc_wait_all(); 

grpc_function_handle_destruct(handle); 

grpc_finalize(); 

Move_bodies(bodies); 

… 

} 

Figure 21 displays the time chart for the operation of the client program in conjunction with 

GridRPC calls to server module on the servers.  
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Figure 21. Time chart of the client program with GridRPC parallelism. 

Clearly, the initialization time and finalization time also contribute to the total computing 

time in addition to the computation time. However, they remain almost constant throughout the 

computation. Thus, the longer computation time is, the lower related overhead is, resulting in 

the higher parallelism acquired. This is one of the key aspects having an enormous impact on 

the performance of the GridRPC implementation. 
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5 Performance evaluation and discussion 

5.1 Computing platforms 

System specifications of 3 clusters used for evaluating the parallel solutions are detailed in 

Table 3. The first 2 clusters, Diplo and Atlantis, are SMP clusters and hence they were exploited 

for performance evaluation of the MPI and hybrid programs.  

Table 3. System specification of three clusters for performance evaluation 

Name Node # of 
Nodes

# of 
CPUs 

Memory 
per Node OS Network 

Diplo Quad Xeon 3GHz 4 16 4GB 
CentOS4.4 with 

Rocks4.2 

Gigabit 

Ethernet 

Atlantis Dual Xeon 2.8GHz 16 32 2GB 
RedHat8.0 with 

SCore5.8 

Gigabit 

Ethernet 

Raptor Pentium IV 3GHz 8 8 2GB 
FedoraCore3 with 

SCore5.8.3 

Gigabit 

Ethernet 

 

With a view to providing a platform for the GridRPC implementation, a preliminary GridRPC 

computing system which consists of 2 clusters, Diplo and Raptor, has been constructed utilizing 

NetSolve middleware as depicted in Figure 22. The system comprises 2 agents, 12 servers with 

24 processors. Basically, it is a RPC based client/agent/server system that allows users to 

remotely access both hardware and software components. At the top tier, the client library is 

linked in with the user's application which makes calls to GridRPC API for specific services. 

The tarbo and spino front-end nodes are designated as the primary and secondary agents, 

respectively. The agents monitor and maintain a database of servers along with a number of 

system parameters, which it uses to allocate server resources for client requests. The 4 compute 

nodes of Diplo and 8 compute nodes of Raptor operate as the servers of the system, executing 

remote functions on behalf of clients. A typical call from a client to the system involving several 

steps is illustrated in the figure too. 

The MPI and hybrid codes are compiled using Intel C compiler version 9 and MPI library 1.2 

of MPICH implementation. The GridRPC client program and server module are built by GCC 

compiler with GridRPC library supplied by the NetSolve system. All of them, MPI, hybrid, and 

GridRPC implementations, were tested with 3 data sets of 10,000, 50,000 and 100,000 bodies in 

10 time-steps. On these systems, we repeated the experiments 5 times and observed small 

performance variations with acceptable standard deviation for 5 measures. The average of these 

5 measures is presented. 
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Figure 22. The GridRPC computing system and a typical call from client. 

5.2 Performance comparison between MPI and hybrid 

The timing runs of the MPI and hybrid MPI-OpenMP codes with the data sets of 10,000, 

50,000, and 100,000 bodies for a fixed number (1, 2, 4, 8, 16, and 32) of CPUs on 2 SMP 

clusters, 4-way Diplo and 2-way Atlantis, are displayed in Tables 4, 5, 6 and Figures 23, 24, 25 

respectively. 

In both clusters, it is easy to recognize that the hybrid implementation outperforms the 

corresponding pure MPI one at all times whatever processors and data sets are used. The 

benefits of multiple levels of parallelism offer a significant performance improvement of 

approximately 30% on 4-way Diplo cluster and 20% on 2-way Atlantis cluster for the hybrid 

program. The average difference between the hybrid and MPI on Diplo is higher than on 

Atlantis, resulted from a greater number of OpenMP threads on Diplo in contrast to Atlantis 

because there are 4 OpenMP threads to be created on a 4-way compute node, and only 2 

OpenMP threads on a 2-way compute node for each MPI process to best suit the system 

architecture. As a result, it is thought that this factor would be even higher in 8 or 16-way 

clusters although the codes have had no opportunity to be evaluated on such systems. 

On the other hand, the performance of both the hybrid and MPI programs on 4-way cluster is 

quite different as against that on 2-way cluster. Given the same size of data set, there are times 

the experimental results obtained on 4-way cluster are better than on 2-way cluster for both 

programs, and vice versa, the results on 4-way cluster are sometimes worse than that on 2-way 

cluster. With 10,000 bodies to be tested, even though the hybrid program on Diplo is faster in 
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case of 2 and 4 CPUs, it begins to become inferior and slower than on Atlantis when the number 

of processors is increased to 8 and 16. Similar outcome is gained with the MPI program; its 

performance on Diplo is better than on Atlantis with 2 and 4 CPUs, but gets worse if more than 

4 CPUs are employed. Since the number of bodies is small, resulting in short computation time 

and hence communication time becomes sizeable and comparable to computation time. Because 

Atlantis is built with the SCore Cluster System Software on top of the PM low level 

communication library which has been proven to provide higher performance [27], 

communication between Atlantis nodes is faster than between Diplo nodes. Thus with 2 and 4 

CPUs in use, i.e., these processors are in the same node, meaning no communication is required 

between Diplo nodes, the performance on Diplo is better. Nonetheless, when communication 

between Diplo nodes takes place in case of 8 and 16 CPUs, the merit of SCore begins to take 

effect and raises the Atlantis’s performance.  

Table 4. Execution time of MPI and hybrid programs with 10,000 bodies (seconds) 

# OF CPUS 1 2 4 8 16 32 

Hybrid - 22.3 11.4 6.7 3.4 - 

D
ip

lo
 

MPI 42 23.1 13.1 7.9 3.9 - 

Hybrid - 23 11.6 5.8 3 1.6 

A
tla

nt
is

 

MPI 46.8 23.5 13.5 6 3.1 1.7 
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Figure 23. Execution time of MPI and hybrid programs with 10,000 bodies. 
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When the size of data set rises from 10,000 to 50,000 bodies, the performance of 4-way 

cluster is also improved together with the longer computation time. In this case, the hybrid and 

MPI programs on Diplo only lose to those on Atlantis with 16 CPUs. For the remaining 

combination of processors (2, 4, and 8), they show the performance of a higher quality on 4-way 

cluster than on 2-way cluster. The possible explanation for this consequence is much the same 

as in the previous data set. Based on that reason, all 4 nodes of Diplo need to communicate to 

each other when 16 processors are utilized, causing a negative effect on the overall performance 

of Diplo contrasted with Atlantis. 

Table 5. Execution time of MPI and hybrid programs with 50,000 bodies (seconds) 

# OF CPUS 1 2 4 8 16 32 

Hybrid - 508 258.7 134.5 81.1 - 

D
ip

lo
 

MPI 1151.4 575 287.9 144.2 85.6 - 

Hybrid - 545.2 272.9 137.5 70.8 42.1 

A
tla

nt
is

 

MPI 1192.2 596.5 300.4 146.5 73.9 44.1 
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Figure 24. Execution time of MPI and hybrid programs with 50,000 bodies. 

The biggest data set of 100,000 bodies presents the most interesting results. Since the 

computation time is greatly lengthened with an increase in the number of bodies, the hybrid 

implementation has a chance to fully exploit the use of OpenMP threads for sharing the 

workload on each SMP node. It is obvious that the Diplo cluster with 4 processors in each node 

has an advantage over the 2-way Atlantis cluster. Consequently, the hybrid program’s 

performance on 4-way cluster is always superior to that on 2-way cluster. Nevertheless, the 
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execution time of the MPI implementation on Diplo, by contrast, is longer than on Atlantis at all 

times. The outcome is likely caused by the communication overhead generated among compute 

nodes of Diplo. Even though the communication time is not substantial beside computation time, 

it still grows with increased interactions among bodies and slows down the performance of MPI 

code on Diplo.  As a result, the difference factor between the hybrid and MPI on Diplo in this 

case is the largest among 3 data sets. 

Table 6. Execution time of MPI and hybrid programs with 100,000 bodies (minutes) 

# OF CPUS 1 2 4 8 16 32 

Hybrid - 48.6 24.9 12.6 6.4 - 

D
ip

lo
 

MPI 134.5 71.6 37.8 19.7 10.4 - 

Hybrid - 54.3 27.1 14.8 7.6 4 

A
tla

nt
is

 

MPI 124.3 63 31.9 16.2 8.3 4.3 
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Figure 25. Execution time of MPI and hybrid programs with 100,000 bodies. 

The performance of the hybrid program with a combination of different scheduling methods 

and chunk sizes on 4-way cluster was also evaluated using 8 and 16 CPUs with the data set of 

100,000 bodies. The timing results obtained by running the hybrid code are listed in Table 7.  

From this table, schedule dynamic evidently outdoes schedules static and guided in most 

cases, and the chunk size has an important impact on the performance. With chunk sizes equal 

to or less than 1000 (16 CPUs) and 2000 (8 CPUs), execution time has not changed much with 

all schedule types. The chunk sizes of 500 and 1000 are the best with dynamic scheduling in 

case of 8 and 16 CPUs respectively. The quality of load balance drops with increasing chunk 
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size and running time grows steadily with chunk size greater than 1000 (16 CPUs) and 2000 (8 

CPUs). As the bodies are not uniformly distributed in their bounding box, the force computation 

time varies enormously from one body to another. Therefore, a chunk size which is too large 

easily leads to load imbalance. The experimental results of the hybrid implementation reported 

earlier are collected with the schedule type of dynamic and the appropriate chunk size 

depending on the size of data sets to get the possibly highest performance, that is, 50 for 10,000, 

200 for 50,000, and 500 for 100,000.  

Table 7. Execution time with different schedules and chunk sizes (seconds) 

CHUNK SIZE 1 100 500 1000 2000 5000 

Static 756.7 755.7 754.8 757 752.3 906.8 

Dynamic 755.2 754.3 751.8 756.2 752.1 906.8 

8 
C

PU
s 

Guided 754.1 758 765.5 756.3 767.7 908.8 

Static 385.9 389.9 387.8 385.7 409.8 447.4 

Dynamic 385.2 388.2 386.3 384.1 408.1 445.3 

 1
6 

C
PU

s 

Guided 385.6 387.1 388.7 390.6 407.9 445.6 

 

5.3 Performance comparison between GridRPC and other versions 

The GridRPC N-Body implementation was executed on the GridRPC computing environment 

which consists of the Diplo and Raptor clusters with the aim of evaluating and comparing the 

performance with the MPI and hybrid ones. The execution time of the GridRPC code on 

GridRPC system, MPI and hybrid codes on 4-way Diplo cluster with the data sets of 10,000, 

50,000, and 100,000 bodies are listed in Tables 8, 9, 10 and Figures 26, 27, 28, respectively.  

Unlike the hybrid implementation which enjoys the benefit of multiple level parallelism 

regardless of data set sizes, the GridRPC program suffers a desperately poor performance with 

the execution time is almost twice as high as that of the hybrid program in case of the smallest 

data set of 10,000 bodies. The execution time is reduced gradually from 1 to 8 processors. 

However, this time rises when the number of CPUs is increased from 8 to 16 and from 16 to 24, 

leading to the best execution time conducted with 8 processors. The cause for this result is that 

the computation time for each GridRPC call on the servers is too short to take advantage of 

simultaneous calls and compensate the cost for initialization, communication and finalization, 

i.e., the parallel portion is not large enough compared to the sequential one of the program. 
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Table 8. Execution time of GridRPC, MPI, and hybrid with 10,000 bodies (seconds) 

# OF CPUS 1 2 4 8 16 24 

Hybrid - 22.3 11.4 6.7 3.4 - 

D
ip

lo
 

MPI 42 23.1 13.1 7.9 3.9 - 
G

rid
 

GridRPC 73.1 47 29.2 21.8 25.1 27.5 
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Figure 26. Execution time of GridRPC, MPI, and hybrid with 10,000 bodies. 

When the data set grows to 50,000 bodies, more bodies require longer computation time for 

the GridRPC calls, causing an improved result of the GridRPC code. Even though the MPI and 

hybrid versions still strongly exhibit a higher performance, the gap between them and the 

GridRPC implementation is narrowed. The GridRPC program is about 30% slower, but scales 

well at all times. The more processors are used, the lower execution time is. The peak 

performance is gained by 24 CPUs, giving rise to an execution time nearly equivalent to that of 

the MPI version with 16 CPUs. 

Table 9. Execution time of GridRPC, MPI, and hybrid with 50,000 bodies (seconds) 

# OF CPUS 1 2 4 8 16 24 

Hybrid - 508 258.7 134.5 81.1 - 

D
ip

lo
 

MPI 1151.4 575 287.9 144.2 85.6 - 

G
rid

 

GridRPC 1667.5 840 431.3 224.1 130 115 
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Figure 27. Execution time of GridRPC, MPI, and hybrid with 50,000 bodies. 

The best performance of the GridRPC program is achieved with the largest data set of 

100,000 bodies. Finally, this time it leaves both the MPI and hybrid versions behind with a 

significantly reduced execution time, approximately 40% and 10% faster, respectively. With the 

increase in the number of bodies, the parallel portion executed by the GridRPC servers now 

becomes large enough to effectively exploit the use of simultaneous calls. Meanwhile, the 

sequential time is trivial and does not contribute to the total computation time as much as in the 

previous data sets. In addition, all the existing 24 CPUs of both clusters in the preliminary 

GridRPC computing system, Diplo and Raptor, are employed to again successfully acquire the 

best result, a rise in the number of processors which can never be accomplished by individual 

clusters. 

Table 10. Execution time of GridRPC, MPI, and hybrid with 100,000 bodies (minutes) 

# OF CPUS 1 2 4 8 16 24 

Hybrid - 48.6 24.9 12.6 6.4 - 

D
ip

lo
 

MPI 134.5 71.6 37.8 19.7 10.4 - 

G
rid

 

GridRPC 86.8 43.7 21.9 11.1 5.9 5.2 
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Figure 28. Execution time of GridRPC, MPI, and hybrid with 100,000 bodies. 

5.4 Discussion 

(1) Performance of MPI and hybrid 

The performance evaluation and comparison show quite interesting results. Given the ability 

to obtain multiple levels of parallelism, the hybrid program outclasses the corresponding pure 

MPI program whatever processors and data sets are used. Based on the fact that performance of 

the hybrid program rises with the number of created OpenMP threads, the hybrid program is 

thought to even further lengthen the difference with the MPI one in 8 or 16-way clusters.  

Furthermore, another big advantage of the hybrid model compared to pure MPI model is that 

it lowers the number of sub-domains in ORB domain decomposition. For instance, only 4 sub-

domains are needed to create for the hybrid program while 16 sub-domains are necessary for the 

MPI program on 4-way Diplo cluster. As the number of sub-domains increases, the shapes of 

domains have a larger range of aspect ratios forcing tree walks to proceed to deeper levels. The 

complexity involved in determining locally essential data rises with the number of sub-domains 

as well. The number of node interactions grows with the number of sub-domains because of 

these effects. As a result, the hybrid model helps reduce this node interaction overhead. 

(2) OpenMP loop schedulers 

The adoption of different loop scheduling methods confirms that schedule dynamic is the best. 

As mentioned earlier, the routine calculating the force of bodies accounts for the vast majority 

of the cycles in typical calculations in this simulation. Synchronization overhead incurred by 

dynamic scheduling is trivial beside this computation time. Consequently, schedule dynamic is 
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always better than schedule static with all chunk sizes, and provides better load balance than 

schedule guided in most cases even though the difference among them is slim. Not only the 

schedule type but also the chunk size has an effect on the performance of the hybrid 

implementation. Therefore, choosing a chunk size is a trade-off between the quality of load 

balancing and the synchronization and computation costs. 

(3) SCore system software 

The size of the data set, in particular the communication time, affects the performance of 

Diplo cluster and Atlantis cluster too. Both the computation time and communication time are 

proportional to the data set size. By taking advantage of the benefit provided by SCore, Atlantis 

deals with communication overhead much better than Diplo which is vulnerable and can not 

tolerate that overhead. The result makes it clear why SCore has been widely chosen for building 

high performance computing cluster systems.  

(4) GridRPC performance  

Similarly, the size of the data set, i.e., the computation time of the GridRPC calls executed on 

the servers, was found to make a big difference to the performance of the GridRPC 

implementation. Most of the time the GridRPC code scales well with an increase in the number 

of employed processors. Nonetheless, the larger the data set is, the higher computation time is, 

bringing about the enhanced performance of the GridRPC program. With the largest data set of 

100,000 bodies tested, the GridRPC performance is superior to that of MPI and hybrid codes 

with approximately 10% faster than the hybrid. Hence, it should come as no surprise that the 

implementation would demonstrate even higher performance with larger data sets. The 

consequences once again prove that the GridRPC programming model is well suited to 

problems with data intensive functions. 

(5) The exploitation of resources  

The lowest execution time is gained by an increased number of processors, 24, a great merit 

brought by the GridRPC model which outweighs the cluster model in terms of exploiting all the 

existing resources and producing higher throughput. Based on a RPC mechanism tailored for 

the grid, the GridRPC paradigm has successfully addressed the issues of stability, heterogeneity 

and security of grid computing and provided an attractive and simpler programming model on 

the grid. For solving large-scale scientific problems, the GridRPC model has given the 

impression of a potential candidate. 
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(6) Speedup  

On the speedup front, the highest speedup factors of the MPI code are 29 on Atlantis when 

running with 32 processors for 100,000 bodies and 13.5 on Diplo with 16 processors for 50,000 

bodies. The speedup of the hybrid implementation is not as obvious to calculate since it is 

inapplicable to the sequential case executing on a single processor. Still, providing that the 

speedup is estimated based on the execution time on 2 processors treated as having the factor of 

2, the hybrid implementation presents the best speedup factors of 29 on Atlantis with 32 CPUs 

for 10,000 bodies and 15 on Diplo with 16 CPUs in case of 100,000 bodies. Regarding speedup, 

the GridRPC program appears to be inferior when compared to MPI and hybrid. In the worst 

case of 10,000 bodies, it can only give the best possible factor of 3.4 with 8 CPUs. Then again, 

as well as the performance, the speedup is gradually improved and the GridRPC achieves the 

highest factors of 14.5 for 50,000 bodies and 17 for 100,000 bodies, both with 24 processors. 

(7) Memory capacity 

Generally, there exists a great challenge that faced all the MPI, hybrid and GridRPC 

programming paradigms, arising from the fact that the memory requirements of the parallel 

treecode are quite large. Nearly all of the memory is assigned to the body and node arrays for 

the local set of bodies with additional arrays for bodies and nodes imported for the locally 

essential trees in the MPI and hybrid codes. Fortunately, on modern computing platforms with 

large amount of memory, it seems no longer a problem. No problem linked with memory was 

encountered on the systems used for evaluating the performance. 
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6 Conclusion 
This dissertation reports the parallelization of the treecode algorithm for N-Body problem 

using MPI, hybrid, and GridRPC parallel programming models. With the hybrid model, after 

ORB domain decomposition among MPI processes, the workload of time-consuming routine for 

calculating forces of the bodies is shared among OpenMP threads. Besides, loop scheduling of 

OpenMP threads is employed with appropriate chunk size for better load balance in the hybrid 

program, resulting in enhanced performance. Given these abilities, the hybrid program outdoes 

the corresponding pure MPI program by average of 30% on 4-way cluster and 20% on 2-way 

cluster in terms of execution time whatever processors and data sets are used. With respect to 

the results, it is believed that for some certain classes of problems, the hybrid paradigm provides 

the most efficient mechanism to fully exploit clusters of SMP nodes. 

Meanwhile, in the GridRPC code, this workload for calculating the forces on the bodies is 

parallelized using multiple asynchronous calls on servers. The performance of GridRPC 

program is determined by the larger, the better size of data sets, that is, the computation time of 

the GridRPC calls executed on the servers. In case of the largest data set of 100,000 bodies, the 

GridRPC version overtakes the MPI and hybrid versions with approximately 10% faster than 

the hybrid implementation. Consequently, porting to a multiple cluster computing environment 

using GridRPC is a proper approach to gain high performance and maximize the use of 

resources.  

Nevertheless, the preliminary GridRPC computing system built for evaluating the GridRPC 

program has been made up of only 2 out of 3 clusters, Diplo and Raptor, lacking Atlantis due to 

networking-related problems. Thus joining Atlantis to the existing GridRPC system to provide 

higher throughput is one of the top priorities. On the other hand, adding graphics to the 

implementations for drawing the movement of the bodies in space and producing much more 

interesting effects is worth considering. In addition to MPI, hybrid and GridRPC models 

presented in the dissertation, shared-memory parallel programming is another noted paradigm 

with OpenMP emerged as the de facto standard. Making performance comparison among 

almost all of the popular programming models, message passing, shared-memory, hybrid, and 

GridRPC, is an appealing plan to offer a complete parallel solution to the treecode. Also, for 

solving the N-Body problem, a number of methods have been introduced to further reduce the 

time complexity in which the Fast Multipole Method (FMM) algorithm [16] has been shown to 

be O(N). Adapting the parallel implementations using FMM algorithm is expected to greatly 

speed up the performance. 
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